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Abstract. A perturbation theory is developed for constructing stroboscopic and Poincaré maps
for Hamiltonian systems with a small perturbation. It is based on a canonical transformation
by which the evolution becomes unperturbed during the entire period while all perturbations are
acting instantaneously during one kick per period. Matching of solutions before and after the
kicks establishes a symplectic map which exactly describes the evolution. The generating function
associated with this map satisfies the Hamilton–Jacobi equations. The solution of this equation is
found in first order of perturbation theory. It is shown that the map reproduces correctly Poincaré
sections and statistical properties of typical orbits. It is shown that the well known perturbed twist
mapping and, in particular, the standard map may be obtained from the symmetric map as an
approximation. The method is also applied to construct Poincaré maps at arbitrary sections of the
phase space. In particularly, the maps describing a motion near the separatrix are derived.

1. Introduction

A Poincaŕe return map is a powerful method to analyse multidimensional dynamic systems,
especially to study dynamic chaotic systems [1–4]. It replaces the dynamics of a continuous
time system by a discrete one (a map). The map has several important advantages for the
study of dynamical systems. First of all it reduces dimensions of the system at least by one.
It allows one to visualise a dynamical system at certain sections (Poincaré sections) of the
phase space, displaying the global dynamics of it. The Poincaré map clarifies the formulation
of many concepts of continuous systems. For example, the determination of orbit stability is
simply reduced to a study of the stability of a fixed point.

Many fundamental models of physics and mechanics are Hamiltonian systems. For
Hamiltonian systems Poincaré maps should be presented as symplectic mappings [3, 5, 6].
Symplectic mappings have been extensively used in a variety of problems of physics
and mechanics, like wave–particle interactions [7, 8], magnetic field structure in magnetic
confinement devices [9–15], transport and mixing in fluids [16–20], particle motion in
accelerators [21], and in long-time evolution of the solar system [22–26]. From the
computational point of view they run much faster than finite element based solutions of
differential equations.

In order to construct Poincaré maps general orbits of the system are necessary. They
may be directly obtained by numerical integration of the equations of motion, which usually
requires long computer times. Approximate maps may be also established using perturbation
and averaging methods [2, 4]. For example, in [3] a Poincaré map is constructed for a two-
degree-of-freedom Hamiltonian system by means of two-dimensional symplectic maps, named
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perturbed twist maps. However, one should note that except for some specific cases, there are
no rigorous derivations of symplectic maps from the equations of motion, and that the existing
methods of their derivation are not quite satisfactory. They are mainly based on replacing a
perturbation by a series of delta functions, and subsequently integrating the equations along
them [7,14,22]. Because the integration procedure of a delta function is not well defined, one
can obtain different forms of maps depending on the asymptotic representation of the delta
function. In particular, as was recently shown in [27], its symmetric representation gives rise
to a symmetric form of the map which describes a Hamiltonian system more closely than
the perturbed twist map. The latter does not conserve the symmetry of Hamiltonian systems
with respect to the simultaneous change of the signs of time and Hamiltonian, i.e.t → −t ,
H →−H .

From the derivation it is also not clear how the map variables are related to those of the
continuous system. Usually these variables are simply identified. Any difference between
them is important because, as was asserted in [26], it is responsible for ‘spurious oscillations
in energy and state variables’.

In this paper we develop a new rigorous method for constructing Poincaré maps for
Hamiltonian systems. It is a new version of the Poincaré–von-Zeipel perturbation theory,
and consists of a regular procedure which reduces the evolution of continuous systems to
symplectic mappings.

The perturbation methods of the classical and celestial mechanics are mainly based on the
averaging principle (see, e.g., [2,3,5,28,29]). The averaging procedure is usually implemented
by a change of variables in the perturbed equations of motion that eliminates fast phases in
the equations. In Hamiltonian systems such a change of variables ought to be canonical. The
averaged equations are usually easier to study than the original ones.

The idea behind the method described here is somewhat similar, and it intends to find a
change of variables in the perturbed equations of motion such that they are easier to integrate.
One way to accomplish this is to eliminate the perturbation, which is the main obstacle for the
integrability. Generally such a change of variables does not exist globally. Nevertheless one can
find a transformation of variables which eliminates the perturbation in certain time intervals.
This may be implemented by a transformation of variables which adds an infinite number
of fast phases to the perturbed part of the equations, in contrast to the averaging procedure
which eliminates fast phases. With this procedure the evolution becomes unperturbed during
the entire period, and all perturbations act instantaneously as kicks at the time instants where
phases are multiple to 2π . The relation between solutions before and after kicks may be found
by the inverse transformation to the old variables using the continuity of the system. This
relation allows us to establish a symplectic mapping describing the evolution in one period of
perturbation.

The idea of adding fast phases in Hamiltonian equations in order to reduce a continuous
system to a symplectic mapping has first been used by J Wisdom in [22] for studying the long-
term evolution of the solar system. This mapping method was later generalized in [23–25].
The method is based on adding high-frequency terms in equations of motion which are chosen
such that the perturbed Hamiltonian becomes a series of time-periodic delta functions. The
behaviour of the system between delta functions is determined by the unperturbed Hamiltonian,
and the effects of delta kicks are found by integrating the system across the delta functions.
The justification of the method is based on the averaging principle, i.e., on the fact that if high-
frequency terms do not contribute significantly to the evolution, adding these terms also does
not affect the system significantly. The fact that the variables in the equations and the ones in
the mappings are not identical was noticed in [26]. In order to relate these variables, so-called
symplectic correctors were introduced by a Lie formalism. This mapping approach has been
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successful in the study of the dynamics of the solar system for very long timescales. Although
this symplectic mapping method is much faster than conventional symplectic integrators, there
are several serious shortcomings of the method.

First of all, the introduction of time-periodic delta functions for the autonomous (explicitly
time-independent) system leads to fluctuations in the total energy of the system, which ought to
be an invariant. Correctors, introduced in [26] in order to take the difference between mapping
variables and the ones of the original system into account, decrease fluctuations of energy but
create a secular drift of the energy. Secondly, the transformation from the variables of the
system to the mapping variables, given by the Lie generating function at the first order of the
perturbation parameter, is not symplectic. On long timescales this may lead to deviations of
the system from true trajectories.

The mapping in this paper appears as a result of the regular procedure of the symplectic
transformation of variables in Hamiltonian equations. This procedure exactly replaces the
dynamics of Hamiltonian systems by the symplectic mapping of a certain form. Generating
functions associated with the map satisfy the Hamilton–Jacobi equations, solutions of which
may be found using perturbation theory.

The content of this paper is the following. In section 2 we introduce a canonical coordinate
transformation in the perturbed Hamiltonian system which eliminates the perturbation during
the entire period, and construct a symmetric symplectic map describing the evolution of the
system during one period of the perturbation. The relation between the symmetric symplectic
map and the perturbed twist mapping is discussed in section 3. The perturbation theory to
analyse the Hamilton–Jacobi equation for a generating function is presented in section 4, and
its solution is found in the first order of perturbation theory. Comparison of the symmetric
mapping with numerical computations is presented in section 5 for the simplified model of
perturbed magnetic field lines in tokamaks. The standard Hamiltonian and the associated
standard map are studied in section 6. A construction of the Poincaré map at the arbitrary
cross-section of the phase space is presented in section 7. In section 8 we derive the map
describing of the motion near the separatrix. In particular, derivations of the separatrix map
and the shifted separatrix map are given. The new mapping method to study Hamiltonian
systems is discussed in the concluding section 9.

2. Canonical transformation and a symmetric symplectic mapping

Consider a Hamiltonian system ofN degrees of freedom in a finite domain of the phase space
(q = (q1, . . . , qN), p = (p1, . . . , pN)). Suppose that in the absence of perturbation the system
is completely integrable, and its trajectories lie onn-dimensional tori. Then one can introduce
action-angle variables(I, ϑ): I = (I1, . . . , IN ), ϑ = (ϑ1, . . . , ϑN), (mod 2π ). The dynamics
of the system is determined by the unperturbed HamiltonianH0(I ):

I = const ϑ = ϑ(0) + ω(I)t (1)

whereω(I) = ∂H0/∂I are frequencies.
Suppose that a small time-periodic perturbation affects the system. The perturbed system

is described by the HamiltonianH = H0(I ) + εH1(I, ϑ, t), which is 2π -periodic inϑ andt :

dI

dt
= −ε ∂H1

∂ϑ

dϑ

dt
= ω(I) + ε

∂H1

∂I
(2)

whereε is a small dimensionless perturbation parameter (ε � 1). Furthermore, we suppose
thatH0(I ) andH1(I, ϑ, t) are sufficiently smooth functions, and the trajectories(I (t), ϑ(t)

are continuous at any time.



2748 S S Abdullaev

Figure 1. Sketch of Poincaré section and Poincaré map.

Let us first recall a definition of a Poincaré map. In general, trajectories lie in a(2N + 1)
dimensional subspace of the extended(2N+2) dimensional phase space(ϑ, t, I,H). Consider
a(2N +1) dimensional cross-section6 which is transversally crossed by trajectories as shown
in figure 1. LetQk be an intersection point of the section by a trajectory. Then the map
that associates the pointQk with the next crossing pointQk+1 is a Poincaŕe map. It is a
2N -dimensional map.

In order to construct a Poincaré map an appropriate cross-section should be chosen. The
choice of the cross-section depends on the specific features of the problem. It is convenient
to take a sectionϑi = const where the given angle variableϑi is a constant for each Poincaré
section. In particular, the cross-section may be located at periodic time instantstk = 2πk
(k = 0,±1,±2). In the latter case we have a stroboscopic map. In this section we construct a
stroboscopic map, i.e.(ϑk, Ik)→ (ϑk+1, Ik+1), whereϑk = ϑ(tk), Ik = I (tk). A construction
of a Poincaŕe map at the cross-sectionsϑi = const will be considered in section 7.

Suppose that there exists a canonical transformation of variables (I, ϑ)→ (J,2):

I = J + ε
∂S(J, ϑ, t)

∂ϑ

2 = ϑ + ε
∂S(J, ϑ, t)

∂J

(3)

given by the generating functionF = Jθ + εS(J, θ, t) of the mixed old and new variables
transforming the HamiltonianH to the new HamiltonianH of the form

H = H0(J, ε) + εH1(J,2, t, ε)

H1(J,2, t, ε) = H1(J,2, ε)

∞∑
n=−∞

cosnt = 2πH1(J,2, ε)

∞∑
k=−∞

δ(t − tk) (4)

whereJ = (J1, . . . , JN) and2 = (21, . . . , 2N). The transformation (3) eliminates the
perturbation in the time intervalstk < t < tk+1. The evolution of the new variables (J,2) in
these time intervals is then determined by the unperturbed HamiltonianH0(J, ε):

J (t) = Jk+0

2(t) = 2k+0 + (t − tk)�(Jk+1−0, ε)
(5)
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where�(J, ε) = ∂H0(J, ε)/∂J is a motion frequency in the new variables. In particular, we
have

Jk+1−0 = Jk+0

2k+1−0 = 2k+0 + 2π�(Jk+1−0, ε).
(6)

In (5) and (6) the following notations are used:Jk±0 = J (tk ± 0),2k±0 = 2(tk ± 0).
However, the new variables(J,2) are not defined at the time instantstk. After passing the

time t = tk, the trajectory(J (t),2(t)) discontinuously jumps to the new orbit. However, due
to smoothness of the old Hamiltonian function, the trajectory of the system in the old variables
(I, ϑ) are continuous at any time. This fact may be used to find jumps of the new variables
(J (t),2(t)) after the trajectory passestk. Indeed, one can apply the canonical transformation
(3) connecting the old (I, θ ) and new (J,2) variables while the trajectory approachestk from
the both directions, i.e.t → tk ± 0. One should note that the generating functionS(J, ϑ) is a
discontinuous function oft at t = tk. At the limits t → tk ± 0, from (3) we have

Ik = Jk±0 + ε
∂S±(Jk±0, ϑk)

∂ϑk

ϑk = 2k±0 − ε ∂S±(Jk±0, ϑk)

∂Jk±0

(7)

whereS±(Jk±0, θk) = lim t→tk±0 S(J, θ, t). Equation (7) determine the relation between the
solutions of the new Hamiltonian while the trajectory passest = tk.

The relationships (7) and the solution (6) allow us to establish a map

(Ik+1, ϑk+1) = T̂s(Ik, ϑk). (8)

The mapping may be written as three consecutive symplectic mapsT̂s = T̂−T̂�T̂+. The first
map(Jk+0,2k+0) = T̂+(Ik, ϑk) may be written as

Jk+0 = Ik − ε ∂S+(Jk+0, ϑk)

∂ϑk

2k+0 = ϑk + ε
∂S+(Jk+0, ϑk)

∂Jk+0
.

(9)

The second map(Jk+1−0,2k+1−0) = T̂�(Jk+0,2k+0) describes the motion of the system
between two consecutive sectionst = tk andt = tk+1, and according to (6) it may be written
as

Jk+1−0 = Jk+0

2k+1−0 = 2k+0 + 2π�(Jk+1−0, ε).
(10)

The last map(Ik+1, ϑk+1) = T̂−(Jk+1−0,2k+1−0) is

Ik+1 = Jk+1−0 + ε
∂S−(Jk+1−0, ϑk+1)

∂ϑk+1

ϑk+1 = 2k+1−0 − ε ∂S−(Jk+1−0, ϑk+1)

∂Jk+1−0
.

(11)

Therefore, the described procedure of symplectic transformations reduces the integration of
the Hamiltonian system (2) to a mapping, i.e. to algebraic equations. It describes the evolution
of 2N variablesI = (I1, . . . , IN), ϑ = (ϑ1, . . . , ϑN) over one period of perturbation. The
trajectories(I (t), ϑ(t)) at an arbitrary timet between two consecutive time instantstk andtk+1

may be found by using the transformations (3) and equation (5).
The mapping (8) defined by equations (9)–(11) is invariant with respect to the

transformationk ↔ k + 1,H →−H , the generating functionsS±(J, ϑ) satisfy the condition

S−(J, ϑ)→−S+(J, ϑ) for H →−H. (12)

Further we will call the map (8)–(11)a symmetric symplectic map(or simply a symmetric
map).
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3. The perturbed twist mapping

There is a large class of area-preserving maps(xk+1, yk+1) = Tp(xk, yk) presented in the form

xk+1 = xk + 2πω(yk+1) + εg(xk, yk+1)

yk+1 = yk + εf (xk, yk+1)
(13)

with the perturbation functionsf (xk, yk+1) and g(xk, yk+1) satisfying the area preserving
condition:∂f/∂xk + ∂g/∂yk+1 = 0; x (mod 2π ) andy are canonical variables.

The map (13), known as the perturbed twist map, describes the essential features of the
Hamiltonian system (2) (see, e.g., [3, 30]). It has been extensively used in various areas
to study Hamiltonian systems (2) by identifying the map variablesx andy with the angle-
action variablesθ and I respectively, and the indexk is identified as time instantstk, i.e.
xk = θ(tk), yk = I (tk). The perturbed twist map (13) may be obtained from the symmetric
map (9)–(11) as an approximate map for the intermediate variables(2k±0, Jk±0). For instance,
in order to establish the map(2k+1−0, Jk+1−0) = T̂p(2k−0, Jk−0) we expand the generating
functionsS±(Jk±0, θk) near the values(Jk+1−0,2k−0), and neglect terms of orderε. Then the
perturbation functionsf (2k−0, Jk+1−0) andg(2k−0, Jk+1−0) are determined by the generating
functionG(2k−0, Jk+1−0):

f (2k−0, Jk+1−0) = −∂G(2k−0, Jk+1−0)

∂2k−0

g(2k−0, Jk+1−0) = ∂G(2k−0, Jk+1−0)

∂Jk−0

(14)

where

G(Jk+1−0,2k−0) = S+(Jk+1−0,2k−0)− S−(Jk+1−0,2k−0). (15)

Therefore, the variables in the perturbed twist mapping (13), do not coincide with the variables
in Hamiltonian equations taken at the sectionst = tk, and they are related to those according
to equations (9) and (11).

4. Generating function

The generating functionS(J, ϑ) satisfies the equation:

H
(
J, ϑ + ε

∂S

∂J
, t

)
= H

(
J + ε

∂S

∂ϑ
, ϑ, t

)
+ ε
∂S

∂t
. (16)

This equation may be solved using perturbation theory. The generating functionS ≡ S(J, ϑ, t)
will be sought as a series in powers ofε:

S(J, ϑ, t) = S1(J, ϑ, t) + εS2(J, ϑ, t) + · · · . (17)

The new unperturbedH0(J, ε) and the perturbedH1(J,2, ε) Hamiltonians in (4) are also
sought as expansions:

H0(J, ε) = H(0)0 (J ) + εH(1)0 (J ) + · · · (18)

H1(J, ϑ, ε) = H(1)1 (J, ϑ) + εH(2)1 (J, ϑ) + · · · . (19)

Expanding both sides of (16) in a series of powers ofε, and equating the terms with the same
order inε, one obtains

H(0)0 (J ) = H0(J ) (20)
∂S1

∂t
+
∂H0

∂J
· ∂S1

∂ϑ
= H(1)0 (J ) +H(1)1 (J, ϑ, t)−H1(J, ϑ, t) (21)

∂Si

∂t
+
∂H0

∂J
· ∂Si
∂ϑ
= H(i)0 (J ) +H(i)1 (J, ϑ, t)− Fi(J, ϑ, t) i > 2 (22)
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where the functionsFi(J, ϑ) are polynomials in∂S1/∂ϑ, . . . ∂Si−1/∂ϑ . Equations (21), (22)
are valid in the time intervalstk < t < tk+1.

The termsH(i)0 (J ) (i > 1) describe the corrections to the unperturbed part of the
HamiltonianH0(J ) and they do not depend on the angular variablesϑ and on timet . They
may be found by the additional requirement that the averaging of equations (21) and (22) taken
over angular variablesϑ are zero, i.e.

H(1)0 (J ) = 〈H1(J, ϑ, t)〉ϑ
H(i)0 (J ) = 〈Fi(J, ϑ, t)〉ϑ .

(23)

From equation (18) it follows that

�(J, ε) = ω(J ) + ε
∂H(1)0 (J )

∂J
+ · · · .

The left-hand sides of equations (21) and (22) are total time derivatives taken along
unperturbed trajectoriesJ (t) andϑ(t) of the system (5), i.e.,

dSi
dt
= ∂Si

∂t
+
∂H0

∂J
· ∂Si
∂ϑ

.

According to (4) the generating functionS1(J, θ, t) may be written as an integral

S1(J, θ, t) = −
∫ t

H1(J, ϑ(t
′), t ′) dt ′ +H(1)0 (J )t +C (24)

whereϑ(t ′) = ϑ(t) + ω(J )(t ′ − t) andC is an integration constant. Then the solution of
equation (21) in the time intervaltk < t < tk+1 satisfying the conditionS1(J, ϑ, t) = 0 at
t = tk + π = 2π(k + 1/2) can be represented as

S1(J, ϑ, t) = H(1)0 (J )(t − tk − π)−
∫ t

tk+π
H1(J, ϑ(t

′), t ′) dt ′. (25)

The solution forS1(J, θ, t) may also be found using a Fourier expansion of the perturbed old
H1 and newH1 Hamiltonians

H1(J, ϑ, t) =
∑
m,n

Hm,n(J ) cos(m · ϑ − nt + ϕm,n) (26)

H1(J, ϑ, t; 0) =
∑
m

Hm(J ) cos(m · ϑ + φm)
∞∑

n=−∞
cosnt (27)

wherem = (m1, . . . , mn), m · ϑ = m1ϑ1 + · · · + mnϑn, ϕm,n andφm are the old and new
phases, respectively. Direct integration of equation (21) with (26) and (27) using the summation
formulae

∞∑
k=−∞

1

k + a

{
sinkx

coskx
= π

sinπa

{
sin[x]a

cos[x]a

where [x] = (2s + 1)π − x, 2πs < x < 2π(s + 1), s = 0,±1,±2, . . . , gives

S1(J, ϑ, t) = H(1)0 (J )(t − tk − π) +
∑
m

Sm(J, ϑ, t) (28)

where

Sm(J, ϑ, t) = πHm(J )sin(m · ϑ +m · ω(J )[t ] + φm)

sin(πm · ω(J ))

−
∑
n

Hm,n(J )
sin(m · ϑ − nt + ϕm,n)

m · ω(J )− n . (29)
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Choosing the amplitudesHm(J ) and phasesφm in order to satisfy the above condition
S1(J, ϑ, t) = 0 att = 2π(k + 1/2) one obtains

Sm(J, ϑ, t) =
∑
n

Hm,n(J )
π

αmn(J )

×{sin(m · ϑ +m · ω(J )[t ] − nπ + ϕmn)− sin(m · ϑ − nt + ϕmn)} (30)

where [t ] = (2k + 1)π − t , for 2πk < t < 2π(k + 1), andαmn(J ) = π(m · ω(J ) − n).
The solution (30) may also be obtained from the integral (25) using the expansion (26). It is a
discontinuous function oft at the valuest = tk. At the limit t → tk ± 0 we have

S±(J, ϑ) = ∓πH(1)0 (J )

+
∑
m,n

{S(s)m,n(J )× sin(mϑ + ϕmn)± S(c)m,n(J ) cos(mϑ + ϕmn)} (31)

where

S(s)mn(J ) = −πHmn(J )
1− cosαmn(J )

αmn(J )

S(c)mn(J ) = πHmn(J )
sinαmn(J )

αmn(J )
.

(32)

In the equations (30)–(32) there are no divergent terms due to small denominators. Near
the resonant valuesJmn, i.e.,m · ω(Jmn) = n, the small termsαmn(J ) in the denominators
of S(s,c)mn cancel with the small numerators.

Consider a particular case of a single perturbation harmonicsn = ν in (26). The map

(Ik+1, ϑk+1) = T̂ (ν)(Ik, ϑk) (33)

corresponding to this case, is described by equations (9)–(11) with the variables(I, ϑ) taken at
the time instantstk = k2π/ν. The corresponding generating functionS±(J, ϑ) is determined
by

S
(ν)
± (J, ϑ) = ∓

π

ν
H(1)0 (J ) +

∑
m

{S(s)m (J ) sin(mϑ + ϕmν)± S(c)m (J ) cos(mϑ + ϕmν)} (34)

where

S(s)m (J ) = −
π

ν
Hmν(J )

1− cosαmν(J )

αmν(J )

S(c)m (J ) =
π

ν
Hmν(J )

sinαmν(J )

αmν(J )

(35)

with αmν(J ) = π(ω(J )/ν − 1).

5. Example. Magnetic field line dynamics in tokamaks

As an example we apply of the mapping method to study the chaotic dynamics of magnetic
field lines in a tokamak ergodic divertor. It is well known that magnetic field lines satisfy the
Hamiltonian system (2). We consider a simplified model for magnetic perturbation containing
two toroidal modesn which does not take into account its radial dependence. A real model of
magnetic perturbations in a toroidal system is studied in [31].

The corresponding HamiltonianH = H0(I ) + εH1(ϑ, t) may be represented by

H0(I ) = ln I

εH1(ϑ, t) = ε
∑
n=1,2

cn

M+nm0∑
m=−M+nm0

m−1gmn cos(mϑ − nt) (36)
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Figure 2. Poincaŕe sections obtained by the map (a) and by the integration of the equations of
motion (b) for the Hamiltonian (36) with a single harmonics perturbationn = 1. The perturbation
parameterε = 0.03,m0 = 6,N = 4, andM = 10. (The ‘theta’ stands forθ .)

where

gmn = (−1)m
sin[(m− nm0)π/N ]

π(m− nm0)
(37)

describes the spectrum of the magnetic perturbation. Heret is the toroidal angle, and
ϑ is the poloidal angle. The perturbationH1 is localized in a finite angular interval:
π(1−1/N) < θ < π(1+1/N). The spectrumgmn of each toroidal harmonicsn is also localized
near the central harmonicsnm0 with a width1m = 2N . The coefficientscn(n = 1, 2) satisfy
the conditionc1+c2 = 1, and they describe the relative contribution of each toroidal harmonics.
The smallness parameterε corresponds to the relative magnetic perturbation.

We consider the system (36) in a finite domain of actionI , located near several resonances
m : n with the central ones beingm = m0, n = 1 andm = 2m0, n = 2. The resonant actions,
determined by the conditionω(Imn) = n : m, areImn = m/n. If the perturbation parameterε
exceeds a certain valueεc these resonances start to overlap thereby forming a stochastic layer
near the central resonant actionI0 = m0.

For the numerical integration of the Hamiltonian equations (2), (36), (37) we have used the
symplectic integration scheme with a constant integration step1t . To plot Poincaŕe sections
the integration step is taken equal to1t = 0.2. To calculate a moment of mean square
displacement〈(1I (t))2〉 = 〈(I (t) − I0)2〉 a smaller integration step1t = 0.01 was chosen.
(〈(. . .)〉 means averaging over the initial angleϑ). Poincaŕe sections of the orbits are plotted
in the(θ, I ) plane.

First consider the case of a singlen = 1 mode perturbation, i.e.c1 = 1, c2 = 0. The
Poincaŕe sections obtained by the numerical integration and the map are shown in figure 2
((a), map and (b), equation) for perturbationε = 0.03, the central harmonics numberm0 = 6,
the effective width of spectrum1m = 2N = 8, and the mode numberM = 10. One can
see from these figures that the map correctly reproduces the structure of the stochastic zone
including the positions of the main and the secondary Kolmogorov–Arnold–Mozer (KAM)
stability islands.

The moment of second-order displacement〈(1I (t))2〉 is shown in figure 3 for the same
parameters as in figure 1 and the initial action variableI0 = 5.7: the curve 1 (thick) corresponds



2754 S S Abdullaev

Figure 3. Comparison of the〈(1I (t))2〉 versus t ,
calculated by the map (curve 1) and by the integration of
equations of motion (curve 2). The parameters are the same
as in figure 2.

to the map and the curve 2 (thin) corresponds to the equation. One can see from figure 2 that
until t < 200π there is no noticeable difference between the results of numerical integration
and the map. Fort > 600π the deviation between them becomes noticeable. However, overall
the map describes the behaviour of the second moment〈(1I (t))2〉 sufficiently well for all time
intervals shown in figure 3.

Let us turn to the perturbations with two-harmonics. This case may be directly studied
by using the map (9)–(11) with the generating function (31) which includes bothn = 1 and
n = 2 harmonics. On the other hand, for this case one can establish a map obtained by
successive coordinate transformations (3) applied separately to each harmonicsn. Since the
period1t = 2π of then = 1 harmonics is twice as large as the period1t = π of n = 2
harmonics, the corresponding mapT̂s should be applied in a common period1t = 2π :

(Ik+2, ϑk+2) = T̂s(Ik, ϑk) (38)

where the variables(Ik, ϑk) are defined at the sectiont = tk = kπ .
In order to construct the map̂Ts we first apply the coordinate transformation(I, ϑ) →

(J,2) (3), which transforms the perturbed HamiltonianH(1)
1 corresponding ton = 1

harmonics only without changing then = 2 harmonics perturbationH(2)
1 :

H = H0(J ) + εH(1)1 (J,2, t) + εH(2)
1 (J,2, t) = H + ε

∂S(1)(J, ϑ, t)

∂t
(39)

whereH(1)1 is a new perturbed Hamiltonian (4) corresponding to then = 1 harmonics,
andS(1)(J, ϑ, t) is its generating function. The second transformation(J,2) → (J̃ , 2̃),
given by the generating functionS(2)(J̃ , 2), transforms only the perturbed HamiltonianH(2)

1
corresponding then = 2 harmonics:

H̃ = H̃0(J̃ ) + εH(1)1 (J̃ , 2̃, t) + εH(2)1 (J̃ , 2̃, t) = H + ε
∂S(2)(J̃ , 2, t)

∂t
(40)
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Figure 4. The same as in figure 2, but for the combination of the harmonicsn = 1 andn = 2
(c1 = c2 = 0.5): (a) corresponds to the mapping with the generating function (31) including
both harmonicsn = 1 andn = 2, (b) corresponds to the mapping (38), (42) with (34), and (c)
corresponds to the numerical integration.

whereH(2)1 is a new perturbed Hamiltonian of type (4) forn = 2 harmonics.
The evolution of the variables(J,2) is then described by the map̂T (2)s (33):

(Jk+1,2k+1) = T̂ (2)s (Jk,2k). (41)

Since the period ofn = 1 harmonics is twice as large as the period ofn = 2 harmonics the
map (38) may be written as

T̂s = T̂ (1)+ (T̂ (2)s )2T̂
(1)
− (42)

where the operatorŝT (1)± , T̂ (2) are defined by equations (33), (9)–(11). In the first order ofε

the corresponding generating functionsS(n)± are given by equation (34).
Poincaŕe sections for the two-harmonics perturbation with amplitudesc1 = c2 = 0.5

are presented in figures 4(a)–(c): (a) is obtained by the map with the generating functions
(31) including both harmonicsn = 1 andn = 2, and (b) is obtained by the map (38), (42)
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Figure 5. Dependence of the second moments
〈(1I (t))2〉 versus time corresponding to the Poincaré
sections in figures 4(a)–(c). Curve 1 corresponds to
the mapping with the generating function (31), curve 2
corresponds to the mapping (38), and curve 3 corresponds
to the numerical integration.

with the generating functions (34). Figure 4(c) corresponds to the numerical integration of
equations of motion. The values of the other parameters are the same as in figure 1. Poincaré
sections in figures 4(a)–(c) are plotted by choosing identical initial conditions. At first glance
both methods reproduce well the main features of the stochastic layer formed near the main
harmonicsm0 = 6. A more careful comparison of figures 4(a)–(c) shows that the map (38),
(42) more precisely reveals some fine details of the phase-space structure.

Figure 5 shows the dependence of the second moments〈(1I (t))2〉 versus time
corresponding to the Poincaré sections shown in figures 4(a)–(c). Curve 1 corresponds to
the mapping (8) with the generating function (31), the curve 2 to the mapping (38), and curve 3
corresponds to the numerical integration with the integration step1t = 0.01. At the initial
staget < 80π results of the numerical integration are reproduced by both maps with a high
precision.

One can conclude that the symmetric map sufficiently well describes the structure of
Poincaŕe sections in the stochastic zone. It is also in good quantitative agreement with
calculations of the moments of mean square displacement.

6. Standard Hamiltonian and standard map

The developed procedure also allows us to establish a map for the standard Hamiltonian (43):

H = I 2

2
+
K

4π2

M∑
n=−M

cos(ϑ − nt). (43)

It is usually supposed that forM → ∞ the Hamiltonian (43) gives the Chirikov–Taylor
map [3,7]:

yk+1 = yk +K sinϑk ϑk+1 = ϑk + yk+1 (44)

whereby the variabley is identified by 2πI . This map is a particular form of the perturbed twist
map (13) and it is well known as a standard map. It has been extensively studied during the past
two decades as one of the basic models in chaos theory and has been used in a variety physical
problems, for instance to study particle–wave interaction, the magnetic field line dynamics in
magnetic confinement devices (see [8–10]). Below we derive a symmetric symplectic map
corresponding to the standard Hamiltonian (43) and study its relation to the standard map (44).

One should note that a direct numerical integration of the standard Hamiltonian (43)
encounters difficulties for large numbers of modesM � 1. This is because the perturbation
becomes fast oscillating and localized near the periodic time instantstk = 2πk. It makes the
numerical integration of this system unreliable [32].
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Consider the case of a large, but a finite number of modesM � 1. Then the Hamiltonian
(43) is continuous, and therefore one can apply the procedure of canonical transformations
presented in section 3. The perturbation parameterε in this case is equal toε = K/4π2.
According to (43), (31) and (32), the generating functionS±(J, ϑ) is in the first order of
perturbation theory:

S±(J, ϑ) = S(s)(J ) sinϑ ± S(c)(J ) cosϑ (45)

where

S(c)(J ) = sin(πω(J ))
n=M∑
n=−M

(−1)n

ω(J )− n

S(s)(J ) = −
n=M∑
n=−M

1− (−1)n cos(πω(J ))

ω(J )− n
andω(J ) = J . For largeM � 1, we haveS(c)(J ) ≈ π , S(s)(J ) ≈ 0, and therefore

εS±(J, ϑ) ≈ ±(K/4π) cosϑ. (46)

The symmetric symplectic map (8) takes the form

Pk+0 = pk + (K/2) sinϑk
Pk+1−0 = Pk+0 ϑk+1 = ϑk + Pk+1−0

pk+1 = Pk+1−0 + (K/2) sinϑk+1

(47)

wherepk = 2πIk,Pk±0 = 2πJk±0. From (47) one can obtain the standard map (44) identifying
the variableyk with Pk−0.

The map (47) is also valid for large values of the perturbation parameterK. Indeed
for a sufficiently large mode numberM the perturbed part of the Hamiltonian (43) may be
approximately replaced by a sum ofδ− functions. Then integration of the equations of motion
gives the standard map (44) for the variablesϑk andPk−0. Since the standard map is a particular
case of the perturbed twist map (13) with the generating functionG(J, ϑ) = (K/2π) cosϑ ,
from (12) and (15) there follows (46). Further we will call the map (47) a symmetric standard
map.

We have compared the time-dependence of〈(1I (t))2〉obtained by the symmetric map and
by numerical integration presented in figure 6: (a) corresponds to the mode numberM = 5,
and (b) corresponds toM = 10, respectively. Curve 1 corresponds to the symmetric map
and curve 2 corresponds to the numerical integration (the integration step1t is 0.01). The
perturbation parameterK = 1.5. As seen from figure 6 forM = 5 andM = 10 the symmetric
map reproduces well the results of numerical integration.

For a large mode numberM the symmetric map may be replaced by the symmetric standard
map (47) that is shown in figure 7 forM = 20: curve 1 corresponds to the symmetric map,
curve 2 corresponds to the symmetric standard map (47), curve 3 describes the numerical
integration, and curve 4 corresponds to the standard map (44). ForM = 20 the difference
between curves 1 and 3 increases with time because of uncertainty of the numerical integration
for this case.

However, one can see that for all time intervals the symmetric map is in good agreement
with the symmetric standard map (curve 3). At the same time the standard map gives a very
noisy curve (curve 4), which is far from the results of the symmetric map and the symmetric
standard map.

Therefore the symmetric map (8)–(11) and the symmetric standard map (47) describe
more correctly the evolution of the standard Hamiltonian than the standard map (44).
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Figure 6. Second moments〈(1I (t))2〉 versus t for
the standard Hamiltonian (43): (a) corresponds to the
mode numberM = 5, and (b) corresponds toM = 10,
respectively. Curve 1 corresponds to the symmetric map
and curve 2 corresponds to the numerical integration
with the integration step1t = 0.01. The perturbation
parameterK = 1.5.

Figure 7. The same as in figure 6, but forM = 20. Curve
1 corresponds to the symmetric map, curve 2 corresponds
to the symmetric standard map (47), curve 3 describes
the numerical integration, and curve 4 corresponds to
standard map (44). The perturbation parameterK is the
same as figure 6.

7. Poincaŕe maps at arbitrary phase-space sections

The procedure described in section 2 may also be applied to obtain a Poincaré map at an
arbitrary cross-section of the phase space. Consider the definite section whereϑN (mod
2π) = χ = const. We should reformulate the Hamiltonian equations introducingϑN as
an independent ‘time’ variable and the corresponding actionIN as Hamiltonian. The real
time variablet and the HamiltonianH will be considered as additional angle and action
variables respectively. Inverting the HamiltonianH = H0(I ) + εH1(I, ϑ, t) with respect to
IN Hamiltonian equations with the independent variableϑN may be written as

dϑi
dϑN
= ∂F

∂I i

dI i
dϑN
= − ∂F

∂ϑi
i = 1, . . . , N (48)

whereF is a corresponding Hamiltonian function:

F ≡ IN = F0(I ) + εF1(I , ϑ, ϑN ; ε) (49)

written as a sum of unperturbedF0 and perturbedF1 parts. In (48)I = (I1, . . . , IN−1, H),
ϑ = (ϑ1, . . . , ϑN−1, t), The unperturbed frequencies of the system (48) are

fi(I ) = ∂F0(I )

∂I i
= ∂IN

∂H

∂H

∂I i
= ωi(I )

ωN(I)
i = 1, . . . , N
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whereωi(I ) = ∂H0(I )/∂Ii , (i = 1, . . . , N) are frequencies of original HamiltonianH0(I ).
Particularly, we havefN(I) = 1/ωN(I).

A Poincaŕe map at the sectionϑN (mod 2π) = χ may be constructed by a canonical
transformation(I , ϑ) → (J ,2) of type (3) with the generating functionF = Jϑ +
εS(J , ϑ, ϑN). HereJ = (J1, . . . , JN−1,H), 2 = (21, . . . , 2N−1, T ). It transforms the
Hamiltonian (49) into a new one:

F = F0(J , ε) + εF1(J ,2, ϑN, ε)

F1(J ,2, ϑN, ε) = F1(J ,2, ε)

∞∑
n=−∞

cosn(ϑN − χ)

= 2πF1(J ,2, ε)

∞∑
k=−∞

δ(ϑN − 2πk − χ).
(50)

Using a procedure described in section 2 one can establish a return map (Poincaré map) at the
sectionϑN(mod2π) = χ , i.e.

(I k+1, ϑk+1) = T̂s(I k, ϑk) (51)

where(I k, ϑk) = (I (ϑNk), ϑ(ϑNk)), ϑNk = 2πk + χ , and(I (ϑN), ϑ(ϑN)) is a trajectory
of the perturbed system (48). The map (51) has a form similar to (9)–(11) with the
generating functionsS±(J , ϑ) = limϑN→ϑNk±0 S(J , ϑ, ϑN), and the frequencies�(J , ε) =
∂F0(J , ε)/∂J .

In the first order of perturbation theory we have

F1(J , ϑN, ε) = ∂F0(J )

∂H
H 1(J , ϑ, t)

�i(J , ε) = fi(J ) + ε
∂F (1)0 (J )

∂Ji
i = 1, . . . , N

(52)

whereF (1)0 (J ) = 〈F1(J , ϑ, ϑN)〉ϑ , andH 1(J , ϑ, t) ≡ H1(J1, . . . , JN−1, JN(J ), ϑ, t).
Similarly to (25), one can obtain the following expression for the generating function:

S1(J , ϑ, ϑN) = F (1)0 (J )(ϑN − ϑNk − π)−
∫ ϑN

ϑNk+π
F1(J , ϑ(ϑ

′
N), ϑ

′
N) dϑ ′N (53)

where the integral is taken along unperturbed trajectoriesϑ(ϑ ′N) = ϑ(ϑN) + f (J )(ϑ ′N − ϑN).
Using (52), equation (53) may be rewritten in terms of the unperturbed trajectoryϑ(t ′) =
ϑ(t) + ω(J )(t ′ − t) of the original HamiltonianH0(I ):

S1(J , ϑ, t) = H(1)0 (J )(t − tk − π/ωN(J ))−
∫ t

tk+π/ωN (J )
H 1(J , ϑ(t

′), t ′) dt ′. (54)

Heretk is a time instant when the trajectoryϑ(t) crosses the sectionϑN (mod 2π) = χ , i.e.
ϑN(tk) (mod 2π) = χ . From (54) one obtains the generating functionS±(J , ϑ) for the map
(51)

S±(J , ϑ) = ±πH(1)0 (J )/ωN(J )−
∫ tk

tk±π/ωN (J )
H 1(J , ϑ(t

′), t ′) dt ′. (55)

The map (51) constructed by the three intermediate maps (9)–(11) with the generating function
(55) defining a Poincaré map at the sectionϑN (mod 2π) = χ . This map is valid for explicitly
time-dependent Hamiltonian systems, as well as for autonomous systems. In the latter case
the HamiltonianH is an integral of motion.

Consider, for example, the one-degree-of-freedom Hamiltonian system with a small time-
periodic perturbation

H = H0(I ) + εH1(I, ϑ, t) H1(I, ϑ, t) = H1(I, ϑ, t + 2π/ν) (56)
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Figure 8. Schematic view of the phase space of a Hamiltonian
system with one hyperbolic fixed point at (x = xs, p = ps ).
Curve 1 describes a trapped motion, curve 2 corresponds to the
separatrix, curve 3 describes untrapped motion.

whereν is a perturbation frequency. Suppose for simplicity thatH(1)0 (J ) = 0. According to
(9)–(11) and (55) the Poincaré map (tk+1, Hk+1) = T̂s(tk, Hk) of the time and energy variables
onto the sectionϑ (mod 2π) = χ has a form

Hk+0 = Hk − ε ∂S+(Hk+0, tk)

∂tk
Tk+0 = tk + ε

∂S+(Hk+0, tk)

∂Hk+0
(57)

Hk+1−0 = Hk+0 Tk+1−0 = Tk+0 + 2π/ω(Hk+1−0) (58)

Hk+1 = Hk+1−0 + ε
∂S−(Hk+1−0, tk+1)

∂tk+1
tk+0 = Tk − ε ∂S−(Hk+1−0, tk+1)

∂Hk+1−0
(59)

where

S±(H, tk) = −
∫ tk

tk±π/ω(H)
H1(I (H), ϑ(t ′), t ′) dt ′. (60)

ω(H) = dH0/dI andI (H) is the inverse of the relationH = H0(I ).

8. Maps near the separatrix

A separatrix is a phase-space curve separating regions with different types of motion. Any
small periodic perturbation destroys the separatrix and creates a stochastic layer near the
unperturbed separatrix. The study of motion near the separatrix is generic for a nonlinear
Hamiltonian system. It has been studied over a long time because of its importance to many
physical applications [7, 8, 16, 20, 33]. The first attempt to construct an area-preserving map
near the separatrix map was made in [33]. The simplest map near the separatrix was proposed
in [7] in terms of time and energy variables, and was called a separatrix (whisker) map.
The geometric interpretation of the separatrix map was given later in [34]. The separatrix
map introduced in [7,8,16,20,33] has a specific feature: it is a return map of time and energy
variables defined at different sections. In [12,13], generalized separatrix maps were introduced
for time and energy variables defined at the same sections.

Below we present a rigorous derivation of the maps near the separatrix. For the sake of
simplicity consider a one-degree-of-freedom Hamiltonian systemH0(x, p) with (x, p) being
the canonical coordinate and momentum. Suppose that the system has one hyperbolic fixed
point at (x = xs, p = ps). Figure 8 shows a schematic view of the phase space: Curve 1
describes a trapped motion, curve 3 corresponds to an untrapped one. Curve 2 describes the
separatrix. Near the hyperbolic fixed point the unperturbed Hamiltonian may be expanded in
a power series ofx − xs andp − ps :

H0(x, p) = Hs − α
2

2
(x − xs)2 +

β2

2
(p − ps)2 +O(1x3,1p3,1x21p,1x1p2) (61)

whereHs = H0(xs, ps),1x = x− xs ,1p = p−ps . Furthermore, without loss of generality
one can putHs = 0.
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Figure 9. Definition of the sections6c and6s on the phase space
(x, p) of a Hamiltonian system.

For the trapped unperturbed motion (H < 0) one can introduce action-angle variables:
(I, ϑ):

I = 1

2π

∮
Ci

p(x;H)dx ϑ = ∂

∂I

∫ x

p(x ′;H)dx ′ (62)

whereCi is a closed contour along the phase-space curvei (i=1, 2) of constantH = H0(x, p).
We will further introduce action-angle variables(I, ϑ) for the untrapped motion(H > 0)
similar to (62) and it is taken along the segment of the contourC3 located on the left side of
the (x, p)-plane, i.e.x < xs . In this way the action variableI becomes a continuous function
of energyH at the separatrixH = Hs .

The period of motionT (H) = 2π/ω(H) near the separatrix goes to infinity, i.e.,
T (H)→∞ (orω(H)→ 0) forH → 0. If the saddle point (xs, ps) lies in a finite domain of
the phase space the asymptotics ofT (H) is universal, i.e.

T (H) = 1

γ
ln
Q

|H | +O(H) for H →±0 (63)

whereγ is determined by the expansion coefficientsα andβ in (61): γ = αβ, and the
parameterQ depends on the systems’ properties.

Suppose that the system is subjected to a small time-periodic perturbation with a frequency
ν. In the action-angle variables the Hamiltonian may be represented by equation (56). The
perturbation destroys the separatrix and the motion near the separatrix becomes chaotic as
it is shown in figure 9): a chaotic trajectory (a solid curve) wobbles around the unperturbed
separatrix (dotted curve).

A chaotic motion near the separatrix may be conveniently described by a map of time
(t) and energy (H ) variables at certain sections of the phase-space (x, p). One can consider
the sections6c and6s , shown in figure 9. The section6c consists of segments of thex axis
located near the farthest crossing points of the unperturbed separatrix with thex axis. The
section6s is located near the hyperbolic saddle point (xs, ps) and consists of two segments of
thex andp axes with the centre at (xs, ps) which are perpendicular to each other.

To construct a map one could use the method presented in section 7. However, this method
fails near the separatrix where the motion frequency behaves likeω(H) = dH0/dI → 0 (or
dI/dH0 → ∞). This singularity does not allow us to invert the HamiltonianH(I, ϑ, t) in
respect to the action variableI near the separatrix and to represent it in the form (49). Below
we present another method to construct a Poincaré map near the separatrix.

Let tk andHk be a time instant and an energy at thekth crossing point of the orbit with
the section6c (or6s). We will construct a return map

(tk+1, Hk+1) = T̂s(tk, Hk). (64)

A change of the angular variableϑ in one step of the map (64) is equal to1ϑ ≡ ϑk+1−ϑk = 2π .
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Notice that a one-and-a-half-degree-of-freedom Hamiltonian systemH = H0(I ) +
εH1(I, ϑ, t) may be replaced by a two-degree-of-freedom Hamiltonian

H(I,H, ϑ, t) = H0(I )−H + εH1(I (H), ϑ, t) = 0 (65)

in the extended phase space(I,H, ϑ, t). Let τ be an independent time variableτ = t . In (65)
the perturbationH1 is chosen as a function of an energyH . Suppose that the trajectory crosses
the6c (or6s) at τ = τk.

We apply a canonical coordinate transformation(I,H, ϑ, t)→ (J,H,2, T ) (3) to (65),
which eliminates the perturbation in the time intervalsτk < τ < τk+1, i.e.H → H:

H(J,H,2, T , τ ) = H0(J, ε)−H + 2πεH1(H,2, T , ε)
∞∑

k=−∞
δ(τ − τk). (66)

The generating function associated with the transformation isF = Jϑ −Ht + εS(H, Jϑ, t).
Because the perturbationH1 in (65) is independent of the actionI , the functionS(H, J, ϑ, t)
also does not depend onJ in the first order of perturbation theory, and therefore the new angle
2 coincides with the old angleϑ . Suppose thatH(1)0 (H) = 0.

The map(Ik,Hk, ϑk, tk) → (Ik+1, Hk+1, ϑk+1, tk+1) is constructed as in section 2. In the
first order ofε a part of the map containing the action-angle variables(I, ϑ) is

Jk+0 = Ik − ∂S+

∂ϑk
ϑk+1 = ϑk + ω(Jk+0,Hk+0)(τk+1− τk)
Ik+1 = Jk+0 +

∂S−
∂ϑk+1

.

(67)

A Poincaŕe recurrence time1τ = τk+1 − τk is determined by the above-mentioned fact that
1ϑ = 2π , i.e.1τ = 2π/ω(H, ε).

Then the map (64) can be represented by (57)–(59) with the corresponding generating
functions (60).

The mapping at the sections6c. Suppose that the perturbation contains single harmonics.
The perturbed HamiltonianH1(I (H), ϑ(t), t) in (55) taken on the unperturbed trajectory may
be represented by

εH1(I (H), ϑ(t), t) = V (H, t − tk) cos(νt + χ) (68)

wheretk is the time instant when the trajectory crosses the section6c, andχ is a phase of the
perturbation. Then the generating functionsS±(H, tk) take the from

S±(H, tk) = K(±)(H) cos(νtk + χ)− L(±)(H) sin(νtk + χ) (69)

where

K(±)(H) = ±
∫ π/ω(H)

0
V (H,±τ) cos(ντ)dτ (70)

L(±)(H) =
∫ π/ω(H)

0
V (H,±τ) sin(ντ)dτ. (71)

The mapping (64), (57)–(59) with the generating function (69) is a return map of variables
(t, H ) at the section6c (see figure 9).

The mapping (64), (57)–(59) can be simplified if the width of the stochastic layer near
the separatrix is rather small. Indeed, in this case due to a weak dependence of the integrals
(70) and (71) on the energyH and due to the fact that the stochastic layer is located in a
small vicinity of the unperturbed separatrix one can neglect the dependencies of the quantities
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K(±)(H) andL(±)(H) onH and instead take their values atH = 0. Taking into account that
ω(H)→ 0 forH → 0 we have the following simplified map near the separatrix:

Hk+0 = Hk + εν{K(+) sin(ϕk + χ) +L(+) cos(ϕk + χ)}
Hk+1−0 = Hk+0ϕk+1 = ϕk + 2πν/ω(Hk+1−0)

Hk+1 = Hk+1−0 + εν{K(−) sin(ϕk+1 + χ) +L(−) cos(ϕk+1 + χ)}
(72)

whereϕk = νtk, and

K(±) ≡ K(±)(0) = ±
∫ ∞

0
V (0,±τ) cos(ντ)dτ (73)

L(±) ≡ L(±)(0) =
∫ ∞

0
V (0,±τ) sin(ντ)dτ. (74)

The integrals in (73) and (74) are taken along the unperturbed separatrix. One should notice
that as the generating functionS(H, t, ϑ) = 0 at the sectionϑ = 2πk + π , i.e., at the section
6s (see figure 9) the intermediate variableHk±0 is equal to the energy at6s .

The map (72) may be written in terms of the variables (Hk+0, tk) defined at the sections
6s and6c, respectively:

Hk+1−0 = Hk−0 + εν{K sin(ϕk + χ) +L cos(ϕk + χ)}
ϕk+1 = ϕk + 2πν/ω(Hk+1−0)

(75)

where

K =
∫ ∞
−∞

V (0, τ ) cos(ντ)dτ L =
∫ ∞
−∞

V (0, τ ) sin(ντ)dτ. (76)

The second term on the right-hand side of the separatrix mapping (75) is the Melnikov
integral [35]. Equations (75) are a conventional form of the separatrix map.

For systems with a hyperbolic fixed point the maps (72) and (75) are invariant with respect
to the transformation of the perturbation parameterε and the energyH :

ε → λε H → λH λ = exp(2πγ/ν) (77)

whereλ is a rescaling parameter determined by the perturbation frequencyν and the parameter
γ = αβ. The latter is a product of the expansion coefficientsα andβ in (61). This property
simply results from the universal logarithmic behaviour (63) of the motion frequencyω(H)

near the separatrix, and was first established in [36,37].
The mapping at the section6s . The trajectories in the stochastic layer, formed in

the vicinity of the unperturbed separatrix, spend most of their time near the saddle points.
Therefore, the dynamics of the system and its statistical properties are mainly determined by
the structure of the stochastic layer near these points. Therefore, it is important to establish
a mapping describing the motion near the saddle point. In such a map both variables (H, t)
should be defined at the section6s (see figure 5). This may be obtained from the separatrix
map (75), shifting the time variabletk from the section6c to the section6s . Sincetk at
the section6c is shifted by half a period of the unperturbed motionπ/ω(H) from tk at the
section6s (see figure 9) and becauseH coincides withH taken at the section6c, we have the
following map:

Hk+1 = Hk + εν

{
K sin

(
ϕk +

πν

ω(Hk)
+ χ

)
+L cos

(
ϕk +

πν

ω(Hk)
+ χ

)}
ϕk+1 = ϕk +

πν

ω(Hk)
+

πν

ω(Hk+1)

(78)
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where both variables(H, t) are defined at the section6s located near the hyperbolic fixed point
(xs, ps). The mapping (78) was first introduced in [12,13], and was called a shifted separatrix
map.

Unlike the separatrix map (75), the map (78) is invariant with respect to the following
transformation of a perturbation parameterε, the energyH and the perturbation phaseχ :

ε → λε H → λH χ → χ + π. (79)

This describes the important, nontrivial rescaling property of the motion near the hyperbolic
fixed point, which has recently been established in [36,37] by numerical simulations, and also
in [12,13] by introducing the shifted separatrix mappings. An analytical proof of this property
for some classes of perturbation was given in [38]. This property describes the fact that
the transformations (79) of the amplitude,ε, and phase,χ , of the time-periodic perturbation
preserve the topology of the phase space of the canonical variables (x, p) near the hyperbolic
saddle point, with the rescaling law:x → λ1/2x, p→ λ1/2p (see, e.g., [38]).

Applications of the separatrix mappings to the problems of diffusion and transport has
been considered in several publications [16,20,39]. The shifted separatrix mapping of the type
(78) has been exploited to study magnetic field lines in tokamaks [12, 13, 40]. These studies
also show that the separatrix map correctly reproduces the results of numerical integration of
equations of motion.

9. Conclusion

The perturbation theory for Hamiltonian systems developed in this work gives a clear and
rigorous way to construct Poincaré maps by means of symplectic mappings. It is actually
a novel integration method for perturbed Hamiltonian equations. The method is based on
a canonical coordinate transformation in the spirit of the Poincaré–von-Zeipel perturbation
theory. However, unlike the latter classical perturbation theory based on the averaging principle
and relying on the elimination of fast phases in the equations of motion, our approach uses
a coordinate transformation which eliminates the perturbation in an entire period, while all
perturbations act during one kick per period only. The dynamics of the transformed system
during the entire period is determined by the unperturbed Hamiltonian. The relation between
the solution before and after the kick is established by an inverse transformation to the old
variables, thereby using their continuity. This procedure allows one to construct a Poincaré
map for the original system by a symplectic map. It consists of three consecutive steps: (1)
canonical transformation of variables to new variables; (2) evolution of new variables along
unperturbed trajectories; (3) inverse canonical transformation to the old variables. Each of
these steps is described by a symplectic mapping. We call this mapa symmetric symplectic
map.

It is clear that the symmetric map is written in terms of the original variables of the
Hamiltonian system. This is the major advantage of the method as compared with the mapping
method developed in [22,23,25]: this is because one does not need the symplectic correctors
introduced in [26] in order to relate the mapping variables to the original ones. Moreover,
unlike the latter method, our method does not encounter an integration across delta functions,
which is not well-defined. On the other hand, in contrast to the classical perturbation methods,
in our approach there is no problem with small denominators. Our map depends only on
the natural parameters of the system and does not include any additional ones, such as an
integration step etc.

The method allows us to study general Hamiltonian maps and their relation to continuous
Hamiltonian systems. We have shown that the variables in many maps, studied in nonlinear
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dynamics and chaos theory, e.g. the perturbed twist map, do not coincide with the variables of
the corresponding continuous Hamiltonian systems. In particular, using the developed method
we have studied the standard Hamiltonian (43), which has been a basic model for systems with
a broad perturbation spectrum. It is widely accepted that to the system (43) there corresponds
the standard map (44). It is shown that the variables in this map cannot be identified with the
variables in the standard Hamiltonian, and we have derived a correct form of the map (called
the symmetric standard map) in terms of the original variables.

In this paper we have presented only the basic elements of the new perturbation theory,
and we have studied the foundation of the main Hamiltonian maps as they are widely used
in nonlinear dynamics and chaos theory, like the perturbed twist mapping, the standard map
and the separatrix map. We have also shown that the new method is in good agreement with
the numerical integrations. Several problems concerning the stability of the new method, its
accuracy, etc. were beyond the scope of the present paper, and require special investigation.
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